ITER 20

Polyalphaolefin bitumen membrane (PAO)

DESCRIPTION

Prefabricated waterproofing membrane composed of distilled bitumen and polyalphaolefin polymers (PAO) reinforced with heavy duty, thermostabilised, non-woven spunbonded polyester fabric that gives the membrane high mechanical properties and good dimensional stability (0.3\%).

For polyolefin membranes without mineral self-protection consisting of slate, intended to be used as a top layer, always provide for periodic surface protection with protective reflective paint.
The particular formulation of the compound ensures high thermal resistance to the action of UV radiation.

ADVANTAGES

\checkmark High puncture strength
\checkmark Resistance to demanding working situations
\checkmark Excellent mechanical performance
\checkmark High flexibility at low temperatures and creep even after aging
$\checkmark \quad$ The PP finish allows for immediate anti UV coating (not essential)
\checkmark Monolayer use

Reinforcement: Non-woven spunbonded polyester fabric
Compound: Polyalphaolefin bitumen
Upper finish: Black PP
Lower finish: PE Film
Intended use: Upper layer / Underlayer/ Heavy duty lower protection / Foundations / Monolayer
Application method: Blowtorch / Glue / Hot air / Mechanical fixing

TECHNICAL SPECIFICATIONS

CHARACTERISTICS	TESTING METHOD	M.U.	TOLERANCE	VALUE
Thickness	EN 1849-1	mm	MDV - 0.2 mm	4
Maximum tensile strength (L/T)	EN 12311-1	$\mathrm{N} / 50 \mathrm{~mm}$	MDV - 20\%	850/650
Flexibility at low temperature	EN 1109	${ }^{\circ} \mathrm{C}$	MLV	-20
Creep	EN 1296/1110	${ }^{\circ} \mathrm{C}$	MDV - $10^{\circ} \mathrm{C}$	140
Load resistance	EN 12730	Kg	MLV	20

PACKAGING

PRODUCT	ROLL SIZE	WEIGHT $\mathrm{Kg} / \mathrm{m}^{2}$	THICKNESS MM	SQUARE METRES PER PALLET	EN
STANDARDS					
ITER 20	$10 \mathrm{~m} \times 1 \mathrm{~m}$	-	4	200	$13707-13969$

Please refer to the technical data sheet for more information, constant research in the field may result in changes to data content without the producer being obliged to inform all interested parties

